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Introduction
Energy Markets

I At the beginning electricity market were government-owned
monopoly, resulting in frequent service interruptions.

I The electricity industry has undergone a restructuring
process over the last three decades, which has led to the
establishment of wholesale electricity markets.

I The goal is the implementation and development of
electricity markets that stimulates competition and market
efficiency on behalf of society.

I A short-term electricity market is implemented, where
energy transactions are held with the participation of
independent power producers.
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Energy Markets

Currently, Brazil follows the Tight Pool Model.

I The policy for price formation is not straightforward.

I Some generators might fail to cover generation costs.
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Introduction
Energy Markets

I We aim to determine the producers bid in a short-term
electricity market.

I Each generator faces a decision-making problem of
estimating the best offer of price and quantity that
maximizes their net revenue, taking into account the
unknown bid strategy of their opponents.
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The Model
Energy Market

We consider the case of energy generators participating in a
day-ahead electricity market.

I Each generator makes a bid for energy (price and quantity)
for each of the 24 hour in the schedule day.

I They maximize revenue considering their opponents
decisions and the regulator (ISO) behavior.

I The ISO takes all producer bids and computes the
generation dispatch minimizing the system total cost of
operation.
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The Model
Energy Market

I According to the producers nature (e.g. hydroelectric,
thermoelectric) their decision may be strongly coupled.

I The resulting model is highly nonlinear and challenging.

Cruz, M. P., Finardi, E. C., de Matos, V. L., & Luna, J. P.
(2016). Strategic bidding for price-maker producers in
predominantly hydroelectric systems. Electric Power
Systems Research, 140, 435-444.
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Generalized Nash Equilibrium Problem (GNEP)

For agent i seeks to solve

Pi(x
−i)


minxi f i(xi, x−i)

s.t. xi ∈ Di

xi ∈ Xi(x−i)
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Generalized Nash Equilibrium Problem (GNEP)

For agent i seeks to solve

Pi(x
−i)


minxi f i(xi, x−i)

s.t. xi ∈ Di

xi ∈ Xi(x−i)

I xi: agent decision variable.

I x−i: other agents decision variables.
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Generalized Nash Equilibrium Problem (GNEP)

For agent i seeks to solve

Pi(x
−i)


minxi f i(xi, x−i)

s.t. xi ∈ Di

xi ∈ Xi(x−i)

Nash Equilibrium

A point x̄ is a Nash Equilibrium if for each i, x̄i solves Pi(x
−i).
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The Model
Decision Variable and Objective Function

xi = (gi, pi, li), where

I gi generation bid (MWh)

I pi price bid ($/MWh)

I li dispatch (MWh)
min
pi,gi,li

f i(pi, gi, li, P (p, g, l))

s.t. (pi, gi) ∈ Si
g ∈ SO
(p, g, l) ∈ SISO
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The Model
Decision Variable and Objective Function

xi = (gi, pi, li), where

I gi generation bid (MWh)

I pi price bid ($/MWh)

I li dispatch (MWh)
min
pi,gi,li

f i(pi, gi, li, P (p, g, l))

s.t. (pi, gi) ∈ Si
g ∈ SO
(p, g, l) ∈ SISO

f i(pi, gi, li, P (p, g, l)) = ϕigi − P (p, g, l)li

where ϕi is i-th agent marginal cost.
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The Model

The energy price P (p, g, l) is defined via some policy. An
examples is

P (p, g, l) := max {pj : lj > 0} .
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The Model
Endogenous Constraints

Si :

{
0 ≤ gi ≤ gmax

i

ψi(gi) ≥ pi ≥ ϕi
where

I gmax
i maximum generation

I ψi(gi) dynamic (generation-related) bidding rule

1. ψi is a strictly decreasing function of generation
2. ψi(0) = κiϕi, κi ≥ 1
3. ψi(g

max
i ) = ϕi

ψi(gi) = ϕi

(
1 + (κi − 1)

gmax
i −gi
gmax
i

)
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The Model
Coupling Constraints:

Operational Coupling Constraints

Can be expressed as linear equations.

The ISO’s Problem

SISO =

(p, g, l) : l ∈ argmin
l


p>l
0 ≤ l ≤ g∑

i li = d (π)




where d is the demand.
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The Model

min ϕigi − P (g, p, l)li

s.t. 0 ≤ gi ≤ gmax
i

ψi(gi) ≥ pi ≥ ϕi (1a)

li ∈ arg min


pili + p−il−i :

0 ≤ li ≤ gi
0 ≤ l−i ≤ g−i

li + l−i = d (πi)

 (1b)
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The Model
The ISO’s Problem

If the bids are such that 0 < p1 < p2 < . . . < pN ,
g1 , g2 . . . gN > 0 and

∑
j gj ≥ d.

min
∑N

j=1 ljpj
s.t. 0 ≤ lj ≤ gj ∀j = 1, 2, . . . N∑N

j=1 lj = d (↔ π) ,
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The ISO’s Problem

If the bids are such that 0 < p1 < p2 < . . . < pN ,
g1 , g2 . . . gN > 0 and

∑
j gj ≥ d.

min
∑N

j=1 ljpj
s.t. 0 ≤ lj ≤ gj ∀j = 1, 2, . . . N∑N

j=1 lj = d (↔ π) ,

∃j∗ unique such that

j∗−1∑
j=1

gj < d ≤
j∗∑
j=1

gj .

The j∗th agent is marginal.
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The ISO’s Problem

If the bids are such that 0 < p1 < p2 < . . . < pN ,
g1 , g2 . . . gN > 0 and

∑
j gj ≥ d.

min
∑N

j=1 ljpj
s.t. 0 ≤ lj ≤ gj ∀j = 1, 2, . . . N∑N

j=1 lj = d (↔ π) ,

The solution l̄ is given by

l̄j =


gj , if j < j∗

d−
j∗−1∑
j=1

gj > 0, if j = j∗

0 if j > j∗ .
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The Model
The ISO’s Problem

If the bids are such that 0 < p1 < p2 < . . . < pN ,
g1 , g2 . . . gN > 0 and

∑
j gj ≥ d.

min
∑N

j=1 ljpj
s.t. 0 ≤ lj ≤ gj ∀j = 1, 2, . . . N∑N

j=1 lj = d (↔ π) ,

As for the dual solution, the price π̄ is given by
π̄ = pj∗ if l̄j∗ < gj∗ (unique multiplier)
π̄ ∈ [pj∗ , pj∗+1] if l̄j∗ = gj∗ (compact set of multipliers)
π̄ ∈ [pj∗ ,+∞) if j∗ = N (unbounded set of multipliers).
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The Model
The Two Agent Case

Proposition

In the two-agent model, assuming that 0 < ϕ1 < ϕ2,
0 < gmax

i < d, for i = 1, 2, and gmax
1 + gmax

2 > d we have that

1. The point g̃1 = gmax
1 , p̃1 = ϕ1, g̃2 = d− gmax

1 , p̃2 = ψ2(g̃2)
and π̃ = p̃2 is always an equilibrium for the model.

2. The point g̃1 = d− gmax
2 , p̃1 = ψ1(g̃1), g̃2 = gmax

2 , p̃2 = ϕ2

and π̃ = p̃1 is an equilibrium for the model, whenever
ψ1(g̃1) > ϕ2 and
(ϕ1 − ψ1(d− gmax

2 ))(d− gmax
2 ) < (ϕ1 − ϕ2)g

max
1 .
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The Model
Numerical Approach

minpi,gi,li ϕigi − P (p, g, l)li
s.t. 0 ≤ gi ≤ gmax

i

ψi(gi) ≥ pi ≥ ϕi

li ∈ arg min


pili + p−il−i :

0 ≤ li ≤ gi
0 ≤ l−i ≤ g−i

li + l−i = d (πi)



16 / 21



The Model
Numerical Approach

min ϕigi − P (p, g, l)li
s.t. 0 ≤ gi ≤ gmax

i

ψi(gi) ≥ pi ≥ ϕi

li ∈ arg min


pili + p−il−i :

0 ≤ li ≤ gi
0 ≤ l−i ≤ g−i

li + l−i = d (πi)



16 / 21



The Model
Numerical Approach

π = P (p, g, l)?

min ϕigi −πli
s.t. 0 ≤ gi ≤ gmax

i

ψi(gi) ≥ pi ≥ ϕi
KKT (pi, l, gi, π)
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The Model
Numerical Approach

Primal

(P )


min

∑N
j=1 ljpj

s.t. 0 ≤ lj ≤ gj ∀j = 1, 2, . . . N∑N
j=1 lj = d (↔ π) ,
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j=1 lj = d (↔ π) ,

Dual

(D)


min λT g − πd
s.t. π − λj ≤ pj , for j = 1, . . . , N

λj ≥ 0 , for j = 1, . . . , N ,
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(P )


min

∑N
j=1 ljpj

s.t. 0 ≤ lj ≤ gj ∀j = 1, 2, . . . N∑N
j=1 lj = d (↔ π) ,

Penalized Dual

(Dβ)


min λT g − πd+ β‖λ‖∞
s.t. π − λj ≤ pj , for j = 1, . . . , N

λj ≥ 0 , for j = 1, . . . , N ,
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The Model
Numerical Approach

Primal

(Pβ)



min
∑N

j=1 ljpj
s.t. 0 ≤ lj , wj ∀j = 1, 2, . . . N

0 ≤ lj − wj ≤ gj ∀j = 1, 2, . . . N∑N
j=1 lj = d (↔ π)∑N
j=1wj = β

Penalized Dual

(Dβ)


min λT g − πd+ β‖λ‖∞
s.t. π − λj ≤ pj , for j = 1, . . . , N

λj ≥ 0 , for j = 1, . . . , N ,
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The Model
Numerical Approach

Proposition

Given a solution (πβ, λβ) we have that πβ ≥ 0 and

(λβ)j = [πβ − pj ]+

Also, if (π1β, λ
1
β) and (π2β, λ

2
β) are solutions,we have that

I π1β ≤ π2β only when λ1β ≤ λ2β.

I π1β < π2β and λ2β 6= 0, then ‖λ1β‖∞ < ‖λ2β‖∞.
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The Model
Numerical Approach

Proposition

Given the family solutions (πβ, λβ)β≥0 we have that

1. The family is bounded.

2. If (π̂, λ̂) is an accumulation point of the family (when
β → 0), then it is a solution of D0. Also, if (π0, λ0) any
other solution of D0, then π̂ ≤ π0 and λ̂ ≤ λ0.
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The Model
Numerical Approach

πβ ≈ P (p, g, l)

min ϕigi −πli
s.t. 0 ≤ gi ≤ gmax

i

ψi(gi) ≥ pi ≥ ϕi
KKT (pi, l, gi, πβ)
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Thank You!
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