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unit-commitment

Unit-commitment problem

The unit-commitment problem in energy management aims at finding the optimal pro-
duction schedule of a set of generation units while meeting several system-wide con-
straints

Optimal scheduling (next day) of a set of generation units coupled with system-wide
constraints

Declined in many different versions
Bilateral or centralized market frameworks
System with hydro/thermal/nuclear utilities
Intermittent sources (sun and wind)

Intermittent and run-of-river generation are uncertain

(Most common) sources of uncertainty
Renewable generation (water inflows, wind, sun)
Energy demand
Unit availability
Energy prices

It has always been a large-scale, non-convex difficult problem, especially in view of the
fact that operational requirements imply that it has to be solved in an unreasonably small
time for its size
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unit-commitment

Energy management: a new landscape

The energy landscape undergoes significant changes worldwide

In addition to classical generating companies, large consumers have gained pro-
tagonism and can perform actions which may significantly impact the load of the
system

As a consequence of the change in the demand of a large consumer, the load of
the network is changed and power gets redistributed in the system (for instance,
preventing congestion at peak times)

It is possible to shift consumption from one moment of the day to another one deemed
more convenient or profitable for the consumer

Such modifications are globally beneficial for the system because generation costs
and constraints are highly nonlinear

Another important feature of this new setting is the (imminent) use of batteries
which partially store intermittent energy and, hence, contribute to mitigating the
uncertainty that is inherent to such power systems
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unit-commitment

Energy management: a new landscape

In order to best represent this new landscape, two new elements must be incorporated
in the energy management model of the system

Aggregators: take advantage of regrouping a set of customers without generation
assets

Microgrids: deal with nearly isolated systems that handle locally their generation,
in the quest for remaining (as much as possible) independent of the global network

In either case, “optimal" interactions between the local actors (aggregators and micro-
grids) with classical generators (represented by a global actor) is crucial for the quest of

higher profitability

lower CO2 emissions

confiability
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unit-commitment

Energy management: a new landscape

In this work, we focus on the interaction between a large global actor and a local
actor representing a smart grid

Both actors dispose of several means of power generation, such as solar cells,
wind generation, etc...

The local actor will attempt to meet the local load as well as possible

The local actor will also interact with the global actor
Excess of local power generation can be sold to the global actor
The local actor can also buy power from the global actor to meet the local demand

The global actor is responsible for adjusting the generation level of his assets to
meet system-wide load
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Energy management: centralized system

Before presenting the bilevel formulation, let’s consider a conventional centralized oper-
ated system 

min
z,w

∑m
j=1 fj (zj ) + h(w)

s.t.
∑m

j=1 Aj zj + Cw = d
w ∈ Ω, zj ∈ Z j , j = 1, ...,m ,

the vector d ∈ RT represents system wide load

the vectors z1, ..., zm are decisions related to generating with assets i = 1, ...,m
(nuclear generation, coal, hydro generation)

w is the demand side management vector

Z 1, ...,Z m and Ω the abstract set of constraints associated with these decisions

Ai zi (Cw respectively) represent the effect on the amount of generated power of a
given decision

The cost functions f1, ..., fm, h are assumed to be convex

In a centralized setting, h and C can be assumed to be zero
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unit-commitment

Energy management: local actor

Moving away from the centrally operated world, we partition the set {1, 2, . . . ,m} of
assets (generating units) into two groups

the assets owned by the global actor: G = {1, ...,mg}

the assets owned by the local actor: L = {mg+1, ...,m}

Then, decision on generation is represented by z = (zG, zL) System wide load is as-
sumed to be d = dG + dL When the demand-side-management tools w are at the
control of the global actor and interfere with the local offer demand balance, the lower
level model is:

V (w) :=


min

zL,ye,y l

∑
i∈L fi (zi )− (ce)>ye + (c l )>y l

s.t. zj ∈ Z i , j ∈ L
y l − ye +

∑
j∈L Ai zi = dL − Cw

ye, y l ∈ RT
+.

Local excess ye of power generation can be sold to the global actor at price ce

Local lack y l of power generation can be bought from the global actor at price c l

(> ce)
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Value function approach

Energy management: local actor

V (w) =


min

zL,ye,y l

∑
i∈L fi (zi )− (ce)>ye + (c l )>y l

s.t. zj ∈ Z i , j ∈ L
y l − ye +

∑
i∈L Ai zi = dL − Cw

ye, y l ∈ RT
+.

This problem corresponds to a situation wherein the local actor ignores uncertainty
on local load

However, the global actor is responsible for dealing and accounting for this uncer-
tainty, and has two stages of decision

In the second stage, the global actor can adjust the generation level of his assets
to meet the system-wide load

Qs(y) :=


min
zG

∑mg
j=1 fj (zs

j )

s.t. w ∈ Ω, zs
j ∈ Z j , j ∈ G∑

j∈G Aj zj + Cw = dG
s − ye + y l

Provided Ω,Z j , j = 1, . . . ,m are convex sets:
V (·) is a convex function on variable w
Qs(·) is a convex function on variable y
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Value function approach

Bilevel formulation

Second-level subproblem (Local problem)

V (w) =


min

zL,ye,yl

∑
i∈L fi (zi )− (ce)>ye + (c l )>y l

s.t. zj ∈ Z i , j ∈ L
y l − ye +

∑
i∈L Ai zi = dL − Cw

ye, y l ∈ RT
+.

Second-stage subproblem

Qs(y) =


min
zG

∑mg
j=1 fj (zs

j )

s.t. w ∈ Ω, zs
j ∈ Z j , j ∈ G∑

j∈G Aj zj + Cw = dG
s − ye + y l

First level problem: global actor

{
min
w,y

h(w) + (ce)>ye − (c l )>y l +
∑

s∈S πsQs(y)

s.t. (ye, y l ) ∈ arg min (Local subproblem)�� ��A stochastic nonsmooth bilevel programming problem
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Value function approach

Bilevel problem: a value-function formulation

Second-level subproblem (Local problem)

V (w) =


min

zL,ye,yl

∑
i∈L fi (zi )− (ce)>ye + (c l )>y l

s.t. zj ∈ Z i , j ∈ L
y l − ye +

∑
i∈L Ai zi = dL − Cw

ye, y l ∈ RT
+.

Second-stage subproblem

Qs(y) =


min
zG

∑mg
j=1 fj (zs

j )

s.t. w ∈ Ω, zs
j ∈ Z j , j ∈ G∑

j∈G Aj zj + Cw = dG
s − ye + y l

Global actor 

min
z,w,y

h(w) + (ce)>ye − (c l )>y l +
∑

s∈S πsQs(y)

s.t.
∑

i∈L fi (zi )− (ce)>ye + (c l )>y l − V (w) ≤ 0
zj ∈ Z i , j ∈ L
y l − ye +

∑
i∈L Ai zi + Cw = dL

ye, y l ∈ RT
+.
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On optimality

General DC programming problem

It turns out that the considered problem is a General DC programming problem1
min

x
f1(x)− f2(x)

s.t. c1(x)− c2(x) ≤ 0
x ∈ X ,

with f1, f2, c1, c2 : Rn → R ∪ {∞} convex functions, and X a convex set
x = (z,w , y)
f1(x) = h(w) + (ce)>ye − (c l )>y l +

∑
s∈S πsQs(y) (non-differentiable)

f2(x) = 0
c1(x) =

∑
i∈L fi (zi )− (ce)>ye + (c l )>y l

c2(x) = V (w) (non-differentiable)

Questions

What is the definition of a stationary point for a general DC programming problem?
(recall that non-differentiable non-convex functions are in general non-regular)

Can we always compute a stationary point? How?

Do we need constraint qualification (CQ)?

What type of CQ?

1H.A. Le Thi, H.V. Ngai, and P.D. Tao, DC programming and DCA for general DC programs. Advanced
Computational Methods for Knowledge Engineering, 2014, pp. 15-35.
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On optimality

General DC programming: B-stationarity I


min

x
f1(x)− f2(x)

s.t. c1(x)− c2(x) ≤ 0
x ∈ X

≡
{

min
x

f1(x)− f2(x)

s.t. x ∈ X c

Let X c := {x ∈ X : c1(x) − c2(x) ≤ 0} and TXc (x̄) the Bouligand tangent cone of X c

at point x̄ ∈ X c

In mathematical terms, d ∈ TXc (x̄) if there exist a sequence of vectors {xk} ⊂ X c

converging to x̄ and a sequence of positive scalars τk → 0 such that d = limk→∞(xk −
x̄)/τk
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On optimality

General DC programming: B-stationarity II

Definition: B(ouligand)-stationarity [2]

A point x̄ ∈ X c is called a B-stationary point of the DC program above if

f ′1(x̄ ; d) ≥ f ′2(x̄ ; d) ∀ d ∈ TXc (x̄) ,

where, for i = 1, 2, f ′i (x ; d) := limt↓0[fi (x + td)− fi (x)]/t is the directional derivative of
fi at point x and direction d

How to verify if a given point x̄ ∈ X c is B-stationary?
In other words, how to characterize the Bouligand tangent cone of X c at point x̄ ∈ X c?

2J.S. Pang, M. Razaviyayn, and A. Alvarado, Computing b-stationary points of nonsmooth DC programs,
Mathematics of Operations Research 42 (2017), pp. 95-118
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On optimality

General DC programming: B-stationarity III


min

x
f1(x)− f2(x)

s.t. c1(x)− c2(x) ≤ 0
x ∈ X

≡
{

min
x

f1(x)− f2(x)

s.t. x ∈ X c

Proposition (W. van Ackooij, W. de Oliveira 2017)

Let x̄ ∈ X c be such that c1(x̄) = c2(x̄). Suppose that the following Slater constraint
qualification (CQ) holds:

there exists d̄ ∈ TX (x̄) such that c′
1(x̄ ; d̄) < c′

2(x̄ ; d̄).

The point x̄ is B-stationary point of the above DC program if and only if

x̄ ∈


arg min

x
f1(x)− [f2(x̄) + 〈g2, x − x̄〉]

s.t. c1(x) ≤ c2(x̄) + 〈s2, x − x̄〉
x ∈ X

∀ g2 ∈ ∂f2(x̄)
∀ s2 ∈ ∂c2(x̄)

This is still not practical unless we assume some structure...
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On optimality

DC programming: particular case

Assume that f2, c2 : Rn → R are convex functions defined by the pointwise maximum
of finitely many differentiable convex functions, i.e.,

f2(x) := max
i=1,...,mf

ψi (x), c2(x) := max
i=1,...,mc

ϕi (x) .

Let Af (x) := {1 ≤ i ≤ mf : f2(x) = ψi (x)} and Ac (x) := {1 ≤ j ≤ mc : c2(x) = ϕj (x)}

Corollary

Let x̄ ∈ X c satisfying c1(x̄) = c2(x̄) and suppose there exists d̄ ∈ TX (x̄) such that
c′

1(x̄ ; d̄) < c′
2(x̄ ; d̄). Then x̄ is a B-stationary point if and only if

x̄ ∈


arg min

x
f1(x)− [f2(x̄) + 〈∇ψi (x̄), x − x̄〉]

s.t. c1(x) ≤ c2(x̄) + 〈∇ϕj (x̄), x − x̄〉
x ∈ X

∀ i ∈ Af (x̄) and ∀ j ∈ Ac(x̄)

This result has been proved in [Pang et al.(2017)Pang, Razaviyayn, and Alvarado] un-
der the more restrictive Pointwise Slater CQ: there exist d̄ j ∈ TX (x̄) satisfying c′

1(x̄ ; d̄ j ) <

〈∇ϕj (x̄), d̄ j 〉 for all j ∈ Ac(x̄)
For more general DC programs, we will need to consider a weaker condition of station-
arity, known as criticality
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On optimality

General DC programming: criticality�� ��Let x̄ ∈ X c satisfying c1(x̄) = c2(x̄)

Considered Slater CQ:

there exists d̄ ∈ TX (x̄) such that c′
1(x̄ ; d̄) < c′

2(x̄ ; d̄)

B-stationarity:

x̄ ∈


arg min

x
f1(x)− [f2(x̄) + 〈g2, x − x̄〉]

s.t. c1(x) ≤ c2(x̄) + 〈s2, x − x̄〉
x ∈ X

for all g2 ∈ ∂f2(x̄)
for all s2 ∈ ∂c2(x̄)

Criticality:

x̄ ∈


arg min

x
f1(x)− [f2(x̄) + 〈g2, x − x̄〉]

s.t. c1(x) ≤ c2(x̄) + 〈s2, x − x̄〉
x ∈ X

for an arbitrary g2 ∈ ∂f2(x̄)
for an arbitrary s2 ∈ ∂c2(x̄)

If both functions f2 and c2 are continuously differentiable, then the concepts of B-
stationarity and criticality coincide
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On optimality
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On optimality

Criticality × KKT point

Criticality:

x̄ ∈


arg min

x
f1(x)− [f2(x̄) + 〈g2, x − x̄〉]

s.t. c1(x) ≤ c2(x̄) + 〈s2, x − x̄〉
x ∈ X

for an arbitrary g2 ∈ ∂f2(x̄)
for an arbitrary s2 ∈ ∂c2(x̄)�� ��A critical point, when is it a KKT point of the general DC problem?

Lemma
Assume that x̄ is a solution of the above subproblem, and that there exists a Slater point x◦ ∈ X
such that c1(x◦) < c2(x̄) + 〈s2, x◦ − x̄〉. Moreover, suppose that

[(a)] either f1 or f2 is continuously differentiable, and

[(b)] either c1 or c2 is continuously differentiable

Then, there exists a Lagrange multiplier λ ≥ 0 such that the point (x̄, λ) satisfies the KKT system
of the general DC programming problem

0 ∈ ∂[f1(x̄)− f2(x̄)] + λ(∂[c1(x̄)− c2(x̄)]) + NX (x̄)
c1(x̄)− c2(x̄) ≤ 0
λ[c1(x̄)− c2(x̄)] = 0
λ ≥ 0, x̄ ∈ X
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Algorithms

DCA - DC Algorithm

Criticality:

x̄ ∈


arg min

x
f1(x)− [f2(x̄) + 〈g2, x − x̄〉]

s.t. c1(x) ≤ c2(x̄) + 〈s2, x − x̄〉
x ∈ X

for an arbitrary g2 ∈ ∂f2(x̄)
for an arbitrary s2 ∈ ∂c2(x̄)

We may employ a DC algorithm [3], [4] to compute a critical point for the general DC
programming problem

DC Algorithm - DCA

Let x0 ∈ X c be given

For k = 0, 1, . . . compute a solution of the following convex program

xk+1 ∈


arg min

x
f1(x)− [f2(xk ) + 〈gk

2 , x − xk 〉]
s.t. c1(x) ≤ c2(xk ) + 〈sk

2 , x − xk 〉
x ∈ X

for an arbitrary gk
2 ∈ ∂f2(xk )

for an arbitrary sk
2 ∈ ∂c2(xk )

If xk+1 = xk stop

3H.A. Le Thi, H.V. Ngai, and P.D. Tao, DC programming and DCA for general DC programs. Advanced
Computational Methods for Knowledge Engineering, 2014, pp. 15-35.

4P.D. Tao and H.A. Le Thi, Convex analysis approach to DC programming: theory, algorithms and applications,
Acta Mathematica Vietnamica 22 (1997), pp. 289-355. 22 / 34
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Algorithms

IDCA: new proposal

DC algorithm with inexact subproblem’s solution
In our application, solving exactly these (DCA) subproblems is too time-consuming
It amounts to solving a (modified) unit-commitment problem per iteration
We, therefore, propose to solve such subproblems inexactly

Y (xk ) := {x ∈ X : c1(x) ≤ c2(xk ) + 〈sk
2 , x − xk 〉}

DC Algorithm with inexact subproblem’s solution

Let x0 ∈ X c be given

For k = 0, 1, . . . find xk+1 ∈ Y (xk ) satisfying either

(I) f1(xk+1)− [f2(xk ) + 〈gk
2 , x

k+1 − xk 〉] ≤ f1(xk )− f2(xk ) and xk+1 6= xk

or
(II) gk

2 ∈ ∂f1(xk+1) + NY (xk )
(xk+1)

If xk+1 = xk stop

[-] Condition (I) is easy to satisfy (at least if xk is not a critical point)
[-] Condition (II) is equivalent to solve exactly the DCA’s subproblem
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Algorithms

How to define trial points xk+1 - I?

(I) f1(xk+1)− [f2(xk ) + 〈gk
2 , x

k+1 − xk 〉] ≤ f1(xk )− f2(xk ) and xk+1 6= xk

or
(II) gk

2 ∈ ∂f1(xk+1) + NY (xk )(xk+1)

In our application:

c1 is linear, implying that Y (xk ) := {x ∈ X : c1(x) ≤ c2(xk ) + 〈sk
2 , x − xk 〉} is a

polyhedron

f1 is a nonsmooth function
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Algorithms

How to define trial points xk+1 - II ?

An implementable manner to satisfy (I) or (II) consists in constructing a cutting-plane
model f̌ν1 (x) of f1(x):

Inner loop

Given z0 ∈ Y (xk ), choose f̌ 0
1 ≤ f1(x)

For ν = 0, 1, . . . , compute

zν+1 ∈


arg min

x
f̌ν1 (x)− [f2(xk ) + 〈gk

2 , x − xk 〉]
s.t. c1(x) ≤ c2(xk ) + 〈sk

2 , x − xk 〉
x ∈ X

for an arbitrary gk
2 ∈ ∂f2(xk )

for an arbitrary sk
2 ∈ ∂c2(xk )

Compute (f1(zν+1), gν+1
1 ) and update the model f̌ν+1

1

Test (I) with xk+1 replaced by zν+1

If it is satisfied, stop and define xk+1 = zν+1
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Early experiments - Proof of concept

Preliminary numerical experiments

We consider a set of hydro-thermal generation assets
Two cascade reservoir systems: the Ain and Isère hydro valleys

27 / 34
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Early experiments - Proof of concept

Preliminary numerical experiments

The power output of these assets is considered to be continuous between 0 and
some maximum power level Pmx

The time horizon is of 2 days with a ∆t = 2 hour time step

There are some ramping rates s (MW/h), such that any adjacent power levels may
differ no more than s∆t

Turbines and pumps connect a set of reservoirs

Constraints involve preservation of mass (flow equations), physical bounds on con-
tents in each reservoir and the amount of energy generated by turbining water

There are 10 Thermal plants, being 1 of them on control of the local actor

The demand side management tools are considered of the form of load displace-
ment. This schematically models the option to recharge an electrical vehicle at a
better moment in time rather than at peaking hours
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Early experiments - Proof of concept

Preliminary numerical experiments


min

x
f1(x)− f2(x)

s.t. c1(x)− c2(x) ≤ 0
x ∈ X

f1 is a polyhedral convex map known through a black box procedure requiring us to
solve several second-stage optimization subproblems (N LPs)

f2 = 0

c1 is linear mapping known through a black-box requiring us to solve a single (lin-
ear) lower level optimization problem (1 LP)

The dimension of x is 1322

X is a polyhedron containing 1303 constraints�� ��Computing f1 is more expensive than computing c2
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Early experiments - Proof of concept

Preliminary numerical experiments

Our implementation, can due to simplicity of c1, account explicitly for the set Y (xk ),
but needs to build a cutting plane model for f1 and thus tries to trigger condition (I)

(I) f1(xk+1)− [f2(xk ) + 〈gk
2 , x

k+1 − xk 〉] ≤ f1(xk )− f2(xk ) and xk+1 6= xk

We compared two solvers:

DCA - An implementation of DC algorithm, solving subproblems up to optimality

IDCA - Our proposal, solving subproblems inexactly

Both solvers are ensured to find critical points of general DC programming problems

DCA IDCA
# oracle calls for f1 1382 989
# oracle calls for c2 12 191
# iterations 12 191
CPU time 1710 679

IDCA provided more than 60% of CPU time reduction

Both solvers found the same critical point
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Early experiments - Proof of concept

Evaluation of the obtained decision

In order to evaluate the quality of the obtained critical point, we have also solved a
coordinated two-stage optimization problem wherein the global actor has full control
over all assets

In terms of optimal cost, the bilevel solution (critical point) is found to be only 0.4 %
more costly than a coordinated two-stage solution

As the two-stage solution yields a valid lower bound on the objective function value
of the bilevel solution, we can conclude on the near “global" optimality of the found
solution

It has been observed in the literature that this class of algorithms does provide a
“near" global solution quite often. We observe the same thing here
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Early experiments - Proof of concept

Future steps

We aim to

compare numerically, in this application, DC algorithms against specialized bilevel
algorithms

add a probabilistic constraint to the DC problem
Since probabilistic functions can be approximated by Monte-Carlo simulation and DC
decomposition, a DC programming formulation for the resulting Chance-Constrained DC
problem is also possible

include binary variables modeling “on/off " of power units
Binary constraints can be also modeled as a DC constraint:

z ∈ {0, 1} ⇔ z ∈ [0, 1] z − z2 ≤ 0
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Summary

In this talk we have discussed energy bilevel optimization problems and DC based meth-
ods for solving them. More:

W. van Ackooij and W. de Oliveira. DC programming techniques with inexact subproblems’
solution for general DC programs.
Submitted manuscript: preprint available http://www.oliveira.mat.br/publications,
pages 1–27, 2017
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