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Outline

* Brief introduction to the mixed complementarity
problem (MCP) and the bounded MCP

* Problem statement: discretely-constrained MCP
(DC-MCP)

e Theoretical results for DC-MCP

* Some Numerical examples:

* Duopoly 1n energy production

* Equity (logic) constraints in network equilibrium
problems
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The Big Picture

Convex Opt.

convex ' non-
;. convex

QP
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Non-Convex Opt.

LP=linear
program

ILP=integer
linear
program

QP=quadratic
program



The Bigger Picture Complementarity
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Problems

KKT conditions

NLP

convex

QP

Other non-
optimization based
problems

e.g., spatial price
equilibria, traffic
equilibria, Nash-
Cournot games




DC-MCP Perspective
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Equilibrium Problems Expressed as Mixed
Nonlinear Complementarity Problems
(Mixed) Nonlinear Complementarity Problem MNCP (also written as NCP or MCP)

Having a function /' : R" — R",find an x € R", y € R™ such that

Fl.(x,y) >0,x = O,Fl.(x,y)*xl. =0jfori=1,...,n

Fl.(x,y)=0,yl. free, for i=n +1,...,n

Example [since all functions (linear) affine --> linear complementarity problem (LCP)]

F(xlaxzayl) =

E(xlaxzayl)
F;(x19x29y1)
F(x,,x,,),)

x +x,+y -2=0 y free

X, + X,

- X1 =N
X, +X,+Y,

%k —
x1+x2) x, =0
— * —]
(xl yl) x,=0

-2

so we want to find x,,x,,y, s.t.

One solution: (x,,x,,y,)=(0,2,0), why? Any others?
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Energy Producer Nash Game Duopoly Expressed
as a Complementarity Problem
-Two producers competing with each other

on how much to produce given as q.,1=1,2

- Market Inverse demand function

p(ql +q2) :O{_/))(ql +q2)9 where a9ﬁ>0

that the producers can manipulate by their production

- Production cost function

C. (qi) =y.q.,1=1,2, where y.>0
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Energy Producer Duopoly Expressed as
a Complementarity Problem

Producer 1I's optimization problem:
max (O{ - ﬁ(ql + Q2)) * ql - qul
st.q =0

KKT conditions:

Find g, s.t. 2f6q,+Bq,-a+y, =20 ¢q =0 (2/5q1+/3’q2—a+y1) q,=0

For Producer 2, similar idea, that is:

Find g, s.t. fq +2pq,-a+y,=0 ¢q,=0 (/J’q1+2/3’q2-a+y2) q,=0

Need to solve both at same time (why?) to get the resulting pure LCP

_ 2/3ql+ﬁQ2_a+yl
/))ql +2/5Q2 -OC+)/2

1
9

F

Can generalize to N players, will get a Nash-Cournot equilibrium

Dr. Steven A. Gabriel 9
Copyright 2012



Re-expressing the bounded MCP as the zero of

a particular median-related function H
(Gabriel, 2017)

Given the function F' : R" — R"™ and vectors [,u € R"™ U {—o0,+0o0} with
| < u, consider the mixed complementarity problem (MCP) [8] as follows.
Find z € R™ so that

Fi(x) >0 z;, =1
F; (:I:') =0 [ <x;<uyy (1)
Fi(x) <0 z; =uy

66 2

Can separate “x’’ into nonnegative variables x and
free variables y to get the conventional MCP
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Re-expressing the bounded MCP as the zero of

a particular median-related function H
(Gabriel, 2017)

0< F;(x,y)la; >0,i e, ={1,...,n,}
0=F;(z,y),y; free,j € I, ={1,...,ny}

With additional discrete (integer) restrictions on some
of the x or y variables

rg€ Ly, de D, C1I,
yqa € Z,de D, C I,
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Re-expressing the bounded MCP as the zero of

a particular median-related function H
(Gabriel, 2016)

Definition 1

A vector pair (x,y) that solves the MCP conditions
with the discrete restrictions is a DC-MCP (discretely
constrained MCP) solution.
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Re-expressing the bounded MCP as the zero of
a particular median-related function H

HZ(CIZ) — XLy — mzd(lz, WU;y Ly — FZ(ZIZ)),\V/Z
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Median-related function H

Note that the function ||H(z,y)|| is in general non-smooth so that (6) is a

nonsmooth optimization problem. For example, let F': R2 — R? be defined ag_l
Q.

Fl(x7y) =:C—|—y,F2(x,y) =Y where ll — Oaul = +00, l2 = — 00, Uz = +
Then,
- xr + <0
H(z,y) = Hi(x,y) _ r — muid(0, +o0,x — (x + y)) _ {ag Y ?J;O
Y Hy(z,y) y — mid(—o0, +00,y — (y)) ) Y
So that
r+yl+ly y<0
H —
Il ={ [t vs
_ S let+yl-y y<0
x| +y y >0

thus for x = 0 fixed,

_ S yl-y=-2y y<0
O, ={ ! =

Le AUV V WIL L Ae NJUUULIVL
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Function H is Nonsmooth

L ' |

. . . . —
2 - 0 1 2 3
y

Figure 1: Example of the mid function being non-smooth.
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Re-expressing the bounded MCP as the zero of
a particular median-related function H

HZ(ZC) — X5 — mzd(lz, WUy Ly — FZ(ZU)),\V/Z

Case 1: x,——F,-(x,y)<l,-§u,-:>z,-:H,-(x,y) = Xx; — [
Case 2: [i<x; — F,'()C,y)<l/t,' = Z; = H,'(X,y) = X; — (X,' — F,'()C,y)) _— F,‘(X,y)
Case 3: [, =x; — Fi(x,y) <wi = z; = Hi(x,y) = x; — (x; — Fi(x,))
= Fi(x,y) = x; —
Case 4: [;<u;<x;—F(x,y) = zi = H;(x,y) = x; — u;
Case 5: [;<u; =x; — Fi(x,y) = zs = Hi(x,y) = x; — u; = Fi(x,y)
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Main MINLP to solve DC-MCP

Definition 2
A vector pair (x,y) that solves the MINLP below is a relaxed
DC-MCP solution.

min | H (z,y)|

s.tl. x; € R_*_,?: = Ix\Dx
Xr; € Z_|_,?: c D,
y; € R ,jel,\D,
y] < Z*.] = Dy
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Main MINLP to solve DC-MCP Using L,; Norm

min

n

=Y G )+ ) (wi +wy)

way3z+ 2 ,w+aw_ 9b9b

icl, jel,

s.t. — ]\[bz < Z;
—J[fl\)/z S L; —

M (2 b, —’Ei) <

— Fz(ili'y) —[; < J[(l — bz)VZ e,
Fi(z,y) —u; < M(1—1b;),Vi € I,
o it <M (Q—bz-—i);-)

~M (146~ ;) < 2 —z;—Fi(x,y)gz\f (1+6: - )
—I\[< ) - Zz-_ —x;+u; < M (bz' +52)
1+ _—
w; Fi(z,y),VYj € I,

Dr. St
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x; € R+,z e I,\D,
x; € Zy,1€ D,
y; € R,jeI,\D,
Y; EZ,jEDy

W .

z
_|_
J

b;, b; € {0,1} Vi € I,

2z, >0,Viel,
wy > 0,V5 €1,

Enforcement of
various cases of
the mid function,
nonnegative
variables x

Enforcement of
various cases of
the mid function,
free variables y
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Main MINLP to solve DC-MCP Using L,; Norm

Case 1: x; — Fi(x,y)<l;<u; = z; = Hi(x,y) = x; — [,
Case 2: [;<x; — Fi(x,y)<u; = z; = Hi(x,y) = x; — (x; — Fi(x,y)) = Fi(x,y)
Case 3. [ =x;,— Fi(x,y)<u; =z, = Hi(x,y) = x; — (x; — Fi(x,y))
= Fi(x,y) =x; — [;
Case 4: [;<u;<xi—F(x,y) =z =H;(x,y) = x; — u;
Case 5: [;<u; =x; — Fi(x,y) = zs = Hi(x,y) = x; — u; = Fi(x,y)
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Main MINLP to solve DC-MCP Using L1 Norm

Theorem 1 For each @ € I, assume that [; < u;. Consider any feasible solu-

tion (:c,y, z+,z_,w+,w_,b,b) to (7). Then, for z; = z;r—zz._,wj = wj—wj_,

z; = H; (z,y) ,Vi € I,

Theorem 2 For each 1 € I, assume that [; < u;. Consider any optimal solu-
,w+*,w_*,b*,b*) to (7). Then at most one of (z;*, z;")
+

0

*

tion (x*, y*, 2zt 27

18 nonzero and at most one of (u wz_) 1S NONZero.

£ 3

|
Lwt L wT ,b*,b*)

to (7) with corresponding optimal objective function value f*. Then,

Theorem 3 Consider any optimal solution (a:*,y*, 2t 2~

f*=0< (z*,y*) solve the DC-MCP (1), (5).




Numerical Results

Problem # || n, Ny There 1s a continuous solution || Type of
that 1s integer? Problem
la 10 10 yes, by construction Small Illustrative
1b 10 10 no Small Illustrative
lc 10 10 no Small Illustrative
1d 1000 || 1000 || yes, by construction Large random
le 1000 || 1000 || ves, but not known in advance || Large random
2a 4 0 yes Energy duopoly
2b 4 0 no Energy duopoly
2cl 4 0 no Energy duopoly
2c2 4 0 no Energy duopoly
3a 12 0 yes, but not known in advance || Spatial Price Equilibrium
3b 12 0 yes, but not known in advance || Spatial Price Equilibrium
3¢ 12 0 yes, but not known in advance || Spatial Price Equilibrium
Table 1: Summary of numerical results.
Dr. Steven A. Gabriel 21
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Numerical Example #1: Energy Production,
Capacitated Duopoly with Selected Complementarity
Relaxation Weighting

dp

maxp (Z Qp) dp — Cp (Qp)

sit. 0<qp <@ (Ap)

Dr. Steven A. Gabriel 22
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Energy Production, Capacitated Duopoly with
Selected Complementarity Relaxation Weighting

[(n—a) (28 8 10\ /a\ [a)
o — a 3 23 0 1 q q
0 < qunax Tl 21 0 0 0 >\21 + )\21 =0
N>/ o 100/ \ /) \ )

||H(Q1ﬁq2:)\1: )‘2)”1 = Z |Hi(Q1tQQa)‘17)‘2)| =0& |H?:(QI:QQ5)‘1?,)‘2)| = 0 for all ¢
1=1,4
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Energy Production, Capacitated Duopoly with
Selected Complementarity Relaxation Weighting

[m—a) /’23 3 0\ [ a1 ) /‘h\
3 q2 9

Yo — & 203 1

g [T —1 0 0 A\ A\l
\ag= ) \o 100/ \xn/ \x)

o OO -

||H(Q17q2:)‘1: )‘2)”1 é Z |H’i(QIaQQ:)‘1:)‘2)| =0& |Hi(Q1:QZ:/\1.«.>\2)| — 0 for all ¢
1=1,4

Thus, an equivalent objective function that could be used would be

Z Wj; |Hz(Q1 q2, >‘1: /\2)|
1=1,4
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Numerical Example #2: Spatial Price Equilibrium (SPE)
with Equity-Enforcing Constraints
SPE as a Variation on a Transportation Problem (Harker)

=201 ) " +(1)D=10 G0

* Want to ship

@ D.=10 to meet
2 demand at
T @ D,=10

minimal cost
Demands

Dr. Steven A. Gabriel 25
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Spatial Price Equilibrium

v, =0

—ZOQ

0, =5
10 @ D,=10
W, =
0,=4

S,=20 @i

Supplies Demands
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Solution:

@D =10 .

* dual prices at

flow on arcs

nodes



Spatial Price Equilibrium

Optimality conditions include
conditions of the form
c,ty, 20.,i=12,j=12,3

X; >O:>Cij+%=6’j

economic interpretation?

Dr. Steven A. Gabriel 27
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Spatial Price Equilibrium

Re marks :

1. The supply and demand quantities were given as constants,

this 1s less realistic than allowing them to vary as a function

of the appropriate prices (y;,1=1,2 for supply, 0, j=1,2,3 for demand)
why?

2.Can generalize the optimality conditions stated before using

price - dependent supply and demand

Dr. Steven A. Gabriel 28
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Spatial Price Equilibrium

Assume the following (inverse) supply and demand functions:

Supply
\Ifi(si)
\VI(SI):SI_ZO /

y,(S,)=0.2S, -1 / S,
7’ \Ifi(si)
0.1D.
Demand O(D-) J( J)
91(D1)=19—D1 YN

0,(D,)=10-0.5D, \ D.

0,(D,)=14-D,

Dr. Steven A. Gabriel 29
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Spatial Price Equilibrium

Complete Optimality Conditions
c; +v,(8,)20,(D,),x,20,i=1,2,/=1,2,3

J J

X; >O:>Cij+Wi(Si):6,'(D')

3 2

with S, =» x,,i=12,D,=> x,,j=12,3
j=1 i=1

Why the above generalized slightly may not be solvable by a

suitable optimization problem (Principle of Symmetry).

e Claim: This is an instance of a mixed NCP, why?

Dr. Steven A. Gabriel 30
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Spatial Price Equilibrium
Spatial Price Equilibrium is an example of a mixed NCP

c; +v,(8,)20,(D;).x; 20,i=1,2,j=1,2,3
x, >0=>c,+y,(S,)=6,(D,)

J J
3 2
S, =Y x,i=1,2,D, =) x,,j=12,3
j=1 i=1

with the following function F
F(x,,i=12,j=1,2,3)

I
3 2

=| ¢ tV, le.j —HJ(injj,i:I,Lj:l,Z,?)
j=1 i=1

Dr. Steven A. Gabriel 31
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Spatial Price Equilibrium with Equity-Enforcing

In this third example, the data from Example #3b are used but an additional
constraint of the if-then type 1s used to demonstrate the flexibility of the pro-
posed DC-MCP approach. Since the solution to Example #3b shows that the
energy supply node 4 has no flow from 1it, a supply planner trying to better
balance the supply-demand network could add constraints on top of the equi-
librium conditions for better equity between the supply nodes. Consider the
tollowing logic that such an energy planner might use to enforce some kind of
equity 1n the network:

if Y ;<06 then Y x; >025) Y zy, Vi
J J i g

where 0; 1s some minimum contractual threshold for supply guranteed to sup-
ply node 2. This if-then condition says that if the SPE flow 1s less than the
contractual minimum, then the 2th energy supply node gets at least % = 25%
of the total flows. Such conditions are implemented by adding the following

constraints where the M; are positive constants to be chosen (M; = 1000 was
COPYIIEIL ZUl L




Spatial Price Equilibrium with Equity-Enforcing
Constraints

1] —

0 — Y @y < b;Mi,i=1,2,34
J

J t 7

b; €{0,1},i=1,23,4

Dr. Steven A. Gabriel 33
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Spatial Price Equilibrium with Equity-Enforcing
Constraints

Using v51 — (5:2 — 03 = 04 = 3, the following is the DC-LCP solution reported by
GAMS.

i) 1 2 3 4 5 |
1 0 12(wasl1lb5) 0 0 20
z;; = 2 20 10 0O 0 O
3 0 O 10 10 15
4 0 3(was0) O O 0

This output shows that only two flows were minimally affected: x19 and
r49 to enforce these equity constraints while at the same time minimizng the
deviation from complementarity and preserving integer flows.
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Spatial Price Equilibrium with Equity-Enforcing
Constraints

-

Thus, (12) with integer restrictions on a subset of the flows z;; is an instance
of a DC-MCP. The followi ing sample SPE with 7z =1,.... 4 supply nodes and
7 =1,...,5 demand nodes is taken from Chapter 4 of [15] As given in [15],
the (rounded) reported solution is

i/j 1 2 3 4 5 ]
1 0 150 0 5
2 20 10 0 0 O
3 0 0 10 10 15
4

0 0 0 0 15

These values when non-rounded are actually slightly different and are the fol-
lowing with an associated complementarity sum of —7.72501F — 6:
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Main MINLP to solve DC-MCP Using L1 Norm

Theorem 2 For each t € I,. assume that [; < u;. Consider any optimal solu-
cwt L wT b, l;‘) to (7). Then at most one of (2", z; ")

2
T w._) 18 nonzero.

2 Y e

*

tion (:c* y*, 2zt 2T

18 nonzero and at most one of (u

Dr. Steven A. Gabriel 37
Copyright 2012




Main MINLP to solve DC-MCP Using L1 Norm

*

T
Lwt L wT ,b*,b*)

to (7) with corresponding optimal objective function value f*. Then,

Theorem 3 Consider any optimal solution (:1:* y* 2t 2

f*=0< (z*,y*) solve the DC-MCP (1), (5).
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Nonlinear Programs Expressed as
Mixed Nonlinear Complementarity Problems

Consider a generic nonlinear program and 1ts resulting KKT conditions

min f(x)
st.g(x)<0,i=1,....m (ul)

hj(x) =0,j=1,....p (vj)
KKT conditions, findx e R",u € R”,v € R"s.t.
; . )
OVf (X)+ D u Vg, (X)+ D v Vh(X)=0
i=1 J=1

(i1)g,(x)<0,u, 20,g.(x)u, =0, foralli=1,...,m
(ii))h (x)=0,v, free, forallj=1,...,p

N\
Vo

Dr. Steven A. Gabriel 39
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Nonlinear Programs Expressed as
Mixed Nonlinear Complementarity Problems

Thus, we get a mixed NCP as follows:

£ (Vf(x)+izn2:ungi(x)+ij;vthj(x)\
Flu|= —g.(x),i=1,...,m
V) h(x),j=1....p
\ )
VI (x)+ iungi (x)+ Zp:vthj (x)=0 x free
i=1 =1
—gl.(x)ZO,izjl,...,m uiZO,(—gi(x))*ul.zO
hj(x)zO,jzl,...,p v, free

-Many other examples in energy, see for example Gabriel et al. (2013)
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Re-expressing the bounded MCP as the zero of
a particular median-related function H
Traditional Case

The traditional case for|/; = 0,u; = +o00,i € I,[; = —00,u; = +00,j € I,

When we specify [; = 0, u; = +00 Vi € I, corresponding to the traditional MCP and
make a boundedness assumption, the resulting formulation i1s more efficient (less
binary variables) as discussed next. First, we want to exclude cases 4 and 3:

case 4:[; <u;<x; — Fi(x,y) = z; = Hi(x,y) = x; — u;
case 5:[; <u; = x; — Fi(x,y) = z; = Hi(x,y) = xi — u; = Fi(x,y)

There are several ways to exclude cases 4 and 5. For example, suppose that the
following assumption is in force.
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Re-expressing the bounded MCP as the zero of
a particular median-related function H
Traditional Case

Assumption 1 There exists a finite #{"* € R, such that x; — F;(x,y) <u™* for all
x €RYF, yeR"Y.
Then, if u; 1s selected greater than ", we have

xi — Fi(x,y) <ul™ <u;

so that cases 4 and 5 are not possible. Assumption 1 i1s mild but rules out functions
like Fi(x,y)=—< where x; — F;(x,y) — +00 as x; — 0, which for any finite

choice of u; would not necessarily rule out cases 4 and 5. Another way to exclude
cases 4 and 5 1s to set u; = +o00 so that cases 4 and 5°s conditions combined

L <u; = +oo<x; — Fi(x,y)

are never true for finite x, y.” Thus, for specificity but without loss of generality,
from here on we take [, = 0, u, = +00 so that the resulting three cases are:

Case 1: x; — Fi(x,y)<0=[<u; =00 =z = H;(x,y) = x;
Case 2: 0=1[<x;—Fi(x,y)<u; =00 =z = Hi(x,y) = Fi(x,y)
Case 3: 0= =x—Fi(x,y)<u; =00 =7z =H;i(x,y) =Fi(x,y) = x;




Spatial Price Equilibrium with Equity-Enforcing
Constraints

The spatial price equilibrium problem (SPE) is a generalization of the classical
linear programming transportation problem [23], [16], [15]. In the SPE, given a
bipartite network of spatially dispersed supply nodes 2 € I and demand nodes
j € J and set of connecting arcs a € A ={(7,7) : 2 € I,j € J} for the resulting
complete network, the objective is to determine the vector of nonnegative flows
r={x;;:1€1,je J} such that

0<V; Zl’za cij (zi) — 05 | D _wij | Las; >0
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