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Key-points of the project

Evolution of1:

electric power generation and transmission
use of renewable and distributed generators
end of a top-down electrical paradigm

electricity usage
electric vehicles
consumption of self produced electricity

social, political, technological evolution and requirements

Which imply:

an increasing use of the distribution network

an increase in the uncertainties on production and consumption2

1E-cube. “Étude Sur La Valeur Des Flexibilités Pour La Gestion Et Le Dimensionnement Des Réseaux De Distribution”. In: (2016),
pp. 1–102.

2Bhargav Prasanna Swaminathan. “Operational Planning of Active Distribution Networks - To cite this version : HAL Id :
tel-01690509 Gestion prévisionnelle des réseaux actifs de distribution – relaxation convexe sous incertitude”. In: (2018).
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Current state of grid management

Operators face different challenges:

little visibility on grid status

no tools to calculate electric characteristics

increasing variability of power transits =⇒ difficulty to anticipate network’s
behavior

Need of a tool to support decision making, in order to:

validate (or not) a line disconnection

have criteria when selecting levers to activate

provide better insight in TSO/DSO communications

always maintain our network within its limits

3 / 17



Introduction Project’ ambitions C.C. Programming Stochastic extension Conclusion

Grid-model and optimization problem

1 define a criteria to optimize

2 choose what to model

3 how to conciliate with a ”solvable” maths model?

4 how to solve our model?

Traditional Optimal Power Flow:

min f (x)

s.t. Pi (V , δ) = PG
i − PL

i ∀i ∈ N

Qi (V , δ) = QG
i − QL

i ∀i ∈ N

P
G,min
i

≤ PG
i ≤ P

G,max
i

∀i ∈ G

Q
G,min
i

≤ QG
i ≤ Q

G,max
i

∀i ∈ G

Vmin
i ≤ V≤Vmax

i ∀i ∈ N

δ
min
i ≤ δ ≤ δmax

i ∀i ∈ N

Several key-words related to Operational Planning:

1 Unit-commitment / Economic dispatch

2 Security-constrained unit-comitment / Security-constrained economic dispatch

3 Add uncertainties
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Levers to consider

1 Change value of imposed voltage at the ”entry point”

2 Production modulation through contracts

3 different types of contracts

3 Direct-load control through contracts

batteries but mainly electric charging points

4 Access to an energy market

5 Topology changes

6 Use of capacitor banks

impact on reactive power

7 Study impact of defaulting on supply
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Current model - simplified version

min
x∈X

CT pδ

s.t. Ii,j = Zi,j (Vj − Vi ) ∀(i, j) ∈ A Ohm’s Law

Si,j =
1

2
(Vi + Ii,j )2 − (V 2

i + I2i,j ) ∀(i, j) ∈ A Defintion of Power
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∑
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k,j −
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Sk,j ∀j ∈ N Power balance

vi ≤ vi ≤ vi ∀i ∈ N Voltage limits

Ii,j ≤ Ii,j ≤ Ii,j ∀(i, j) ∈ A Transit limits
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= p
δ−,h
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∀h ∈ Bi (NC2) Enforcing contracts’ laws

p
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p
δ+,h
i

= p
δ−,h
i

= 0, ∀h ∈ Bi (OC)

pν ≥ 0
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Our problem’ characteristics

In our particular case:

non-linear (e.g. electric losses)

non-convex (e.g. integer variables, possibly trigonometric functions)

we want to include uncertainties

=⇒ a non trivial optimization problem

In case you would be interested in some relevant references:

DTU Summer School lectures 2018

Steven Low’s work3

3Masoud Farivar and Steven H. Low. “Branch Flow Model: Relaxations and Convexification (Parts I, II)”. In: (2012). issn:
0885-8950. doi: 10.1109/TPWRS.2013.2255317. arXiv: 1204.4865.
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Objectives and some statistics on our datasets

Some characteristics in our project:

short-term optimization: D-4 to 30 minutes before

time-step: 30 minutes

HTA network: from the secondary of the transformer till HTA/BT transformer

3 types of contracts with producers

direct-load control

voltage control at the secondary of transformer

electric vehicles - charging points

On a 32 bus network, in a Branch-Flow model, considering only producers as a lever:

24480 constraints

8304 variables
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Introduction to difference of convex programming

Difference of convex structure: ”the common underlying mathematical structure of
virtually all nonconvex optimization problems”4

Definition

A function f is said to be convex-concave or a difference of convex on a convex set
Ω ⊂ Rn if exist two convex functions g and h such that:

f (x) = g(x)− h(x), ∀x ∈ Ω

Properties

All functions of C2(Rn) functions are convex-concave on convex compact sets of Rn

The set of convex-concave functions is dense in the set of continuous functions.

4Hoang Tuy. Convex Analysis and Global Optimization. Vol. 110. 2016. isbn: 978-3-319-31482-2. doi:
10.1007/978-3-319-31484-6. url: http://link.springer.com/10.1007/978-3-319-31484-6.
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Introduction to difference of convex algorithm

So we define a Difference of Convex Program as:

min
x∈X

f0(x)

s.t. fi (x) ≤ 0, i ∈ J1,mK

with fi = gi − hi , i ∈ J0,mK D.C. functions and X ⊂ Rn a closed convex set

Algorithms to solve a DCP:

Difference of Convex Algorithm: comes from Fenchel’ Duality5

Convex-Concave Procedure: a local heuristic that utilizes tools from convex
optimization6

5Hoang Tuy. Convex Analysis and Global Optimization. Vol. 110. Springer Optimization and Its Applications. Cham: Springer
International Publishing, 2016, pp. XII, 340. isbn: 978-3-319-31482-2. doi: 10.1007/978-3-319-31484-6. url:
http://link.springer.com/10.1007/978-3-319-31484-6.

6Thomas Lipp and Stephen Boyd. “Variations and extension of the convex–concave procedure”. In: Optimization and Engineering
17.2 (2016), pp. 263–287. issn: 15732924. doi: 10.1007/s11081-015-9294-x.
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And what about uncertainties?

Continuous variables with sources of uncertainties:
Producers’ production, loads’ consumption

A generic way to model a constraint guaranteeing feasibility ”as much as possible”:7

P[f (x , ξ) ≤ 0] ≥ p

with:

x decision vector

ξ random vector

p probability level

f (x , ξ) ≤ 0 a finite system of inequalities

7Wim van Ackooij et al. “Chance Constrained Programming and Its Applications to Energy Management”. In: Stochastic
Optimization - Seeing the Optimal for the Uncertain June (2011). doi: 10.5772/15438. url:
http://www.intechopen.com/books/stochastic-optimization-seeing-the-optimal-for-the-uncertain/chance-constrained-

programming-and-its-applications-to-energy-management.
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Stochastic extension

In our particular case, the optimization problem will be:

min g0(x)− h0(x) (1)

s.t. P[gi (x , ξ)− hi (x , ξ) ≤ 0] ≥p, i ∈ I1 (2)

gi (x , ξ)− hi (x , ξ) ≤0, i ∈ I2 (3)

Ax ≤0, (4)

Are there particular properties about constraints (2)?
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Stochastic extension - DC approximation 1

Some interesting work to reformulate (2) in a D.C. way:

Approximation of the indicator function

Recall we have:

P[h(x , ξ)− g(x , ξ) ≥ 0] = E[1[0,+∞)(g(x , ξ)− h(x , ξ))]

and we approximate x 7→ 1[0,+∞)(x) by ζt :

ζt(z) =
max(z + t, 0)

t
−

max(z, 0)

t

Figure: ζt function with t = 1
2
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Stochastic extension - DC Approximation 2

A mixed-binary relaxed-approach

Step 1: Sampling and selection of scenarios

Let (ξi )i∈I be a sample of scenarios with probabilities (πi )i∈I1

P[gi (x , ξ)− hi (x , ξ) ≤ 0] ≥ p ≈


[gi (x , ξ

j )− hi (x , ξ
j )]zj ≤ 0, ∀j ∈ I

πT z ≥ p

zj ∈ {0, 1} ∀j ∈ I

Step 2: continuous relaxations (t > 0)

zj ∈ {0; 1} → zj ∈ [0; 1]

[gi (x , ξ
j )− hi (x , ξ

j )]zj ≤ 0→ zj ≤ e−
1
t

[gi (x,ξ
j )−hi (x,ξ

j )] (5)

Step 3: using the log and max function in (5)

zj ≤ e−
1
t

[gi (x,ξ
j )−hi (x,ξ

j )] ≈ gi (x , ξ
j )− hi (x , ξ

j ) + t log(zj ) ≤ 0,∀j

≈ max
j∈I

(
gi (x , ξ

j )− hi (x , ξ
j ) + t log(zj )

)
≤ 0
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Are probabilistic constraints convex-concave themselves?

Yes under some assumptions...8

Let’s consider the following problem:

min
x∈X

f (x)

s.t. P[g1(x , ξ)− h1(x , ξ) ≤ 0] ≥ p

g2(x)− h2(x) ≤ 0.

Proposition

Assuming the following:

M(x) = {z ∈ Rm : g1(x , z)− h1(x , z) ≤ 0} is convex

ξ ∈ Rm is an elliptically symmetric random vector with ”nice” properties

g1 and h1 are convex in x ;

g1 is convex in ξ, h1 is concave in ξ;

Then P[g1(x , ξ)− h1(x , ξ) ≤ 0] also is convex-concave

8Wim van Ackooij and Jérôme Malick. Eventual convexity of probability constraints with elliptical distributions. 2018. doi:
10.1007/s10107-018-1230-3.
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Conclusion

Our objectives:

provide a framework to fully study the impact of different grid models

and of different solving methods (e.g. MINLP vs D.C. programming)

have the ability to select different levers

test several D.C. formulations

provide sensitivity analysis

investigate the stochastic side and its D.C. formulations

in particular:
what differences are there between uncertainties D-4 days vs h-30 minutes?
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Conclusion

Thank you for your attention!

Paul Javal
CMA Mines Paristech - EDF R&D

paul.javal@edf.fr

Supervision: Sophie Demassey CMA Mines Paristech
Hugo Morais EDF R&D
Welington de Oliveira CMA Mines Paristech
Wim van Ackooij EDF R&D

17 / 17


	Introduction
	Project' ambitions
	C.C. Programming
	Stochastic extension
	Conclusion

